Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sujittra Youngme, ${ }^{\text {a* }}$ Thidarat Chotkhun ${ }^{\mathrm{a}}$ and Narongsak Chaichit ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand, and ${ }^{\mathbf{b}}$ Department of Physics, Faculty of Science and Technology, Thammasat University Rangsit, Pathumthani, 12121, Thailand

Correspondence e-mail: sujittra@kku.ac.th

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.020$
$w R$ factor $=0.051$
Data-to-parameter ratio $=17.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Acetatoaqua(di-2-pyridylamine)isothiocyanatocopper(II)

In the structure of the title complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)(\mathrm{NCS})\right.$ $\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)$], the $\mathrm{Cu}^{\text {II }}$ atom displays a square-pyramidal geometry, coordinated by two N atoms of the di-2-pyridylamine ligand, the N atom from the isothiocyanate ligand and two O atoms from the acetate group and the water molecule. The structure displays intermolecular hydrogen bonding.

Comment

Copper(II) complexes are known to display a large variety of non-regular stereochemistries (Hathaway, 1987). A large number of $[\mathrm{Cu}(\text { chelate })(\mathrm{OXO})(\mathrm{O} Y \mathrm{O})]^{+}$cations, where the chelate is 2,2'-bipyridyl (bpy), 1,10-phenanthroline (phen) or di-2-pyridylamine (dpyam) and OXO and OYO are monovalent oxyanions, e.g. $\mathrm{ONO}^{-}, \mathrm{HCO}_{2}^{-}, \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}$, are well known and have been characterized as having distorted octahedral stereochemistry (Youngme et al., 1998). However, very few complexes containing mixed pseudohalide and carboxylate ligands have been reported in the literature. In this study, we present the five-coordinate copper(II) complex acetatoaqua(di-2-pyridylamine)isothiocyanatocopper(II), (I).

(I)

The molecular structure of (I) is shown in Fig. 1. The coordination geometry around the $\mathrm{Cu}^{\mathrm{II}}$ atom is distorted square pyramidal with a $\mathrm{CuN}_{3} \mathrm{O}_{2}$ chromophore $(\tau=0.19)$. The structure index is defined as $\tau=(\beta-\alpha) / 60$, where β and α are the largest coordination angles; $\tau=0$ for square pyramidal (SP) and $\tau=1$ for trigonal bipyramidal (TBP) geometry (Addison et al., 1984). The four shorter bonds in the basal plane involve two N atoms of the dpyam ligand, an O atom from an acetate anion and an N atom from an isothiocyanate anion. A coordinated water molecule occupies the axial positions with a longer $\mathrm{Cu}-\mathrm{O}$ bond distance (Table 1). The Cu atom is displaced 0.166 (1) \AA from its basal plane. The

Received 9 June 2006
Accepted 4 July 2006

Figure 1
The molecular structure of (I) with 50% probability displacement ellipsoids (arbitrary spheres for H atoms).
dihedral angle between the pyridine rings is $20.4(1)^{\circ}$, and that between the $\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 2$ and $\mathrm{N} 4-\mathrm{Cu}-\mathrm{O} 3$ planes is 15.7 (1) ${ }^{\circ}$.

An intermolecular hydrogen-bonding network is present in the crystal structure of (I) (Table 2).

Experimental

The title complex was obtained as a side product in the preparation of $\left[\mathrm{Cu}_{4}(\text { dpyam })_{4}(\mu-\mathrm{NCS})_{6}\left(\mathrm{OOCCH}_{3}\right)\right]$ by adding a warm solution of di-2-pyridylamine $(0.171 \mathrm{~g}, 1.0 \mathrm{mmol})$ in methanol $(20 \mathrm{ml})$ to a hot aqueous solution $(10 \mathrm{ml})$ of $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}(0.182 \mathrm{~g}, 1.0 \mathrm{mmol})$ and KSCN ($0.041 \mathrm{~g}, 0.5 \mathrm{mmol}$). An aqueous solution (5 ml) of NaOH $(0.021 \mathrm{~g}, 0.5 \mathrm{mmol})$ was then added. The resulting green solution was allowed to evaporate slowly at room temperature. After several days, blue crystals of (I) formed. The crystals were filtered off, washed with mother liquor and dried in air.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)(\mathrm{NCS})\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)\right.$ $\left(\mathrm{H}_{2} \mathrm{O}\right)$]
$M_{r}=369.88$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.97420$ (10) \AA
$b=13.2883$ (1) \AA
$c=17.0472(2) \AA$
$V=1579.85(3) \AA^{3}$

Data collection

Siemens SMART CCD areadetector diffractometer ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2000a)
$T_{\text {min }}=0.596, T_{\text {max }}=0.709$

$Z=4$

$D_{x}=1.555 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=1.53 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Rod, blue
$0.48 \times 0.30 \times 0.23 \mathrm{~mm}$

11607 measured reflections
4384 independent reflections
4133 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=30.4^{\circ}$

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0328 P)^{2}\right]$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$w R\left(F^{2}\right)=0.051$
$S=1.05$
4384 reflections
255 parameters
H atoms treated by a mixture of independent and constrained refinement
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\text {max }}=0.24 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), 1666 Friedel pairs
Flack parameter: 0.20 (2)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{Cu} 1$	$1.9615(10)$	$\mathrm{O} 3-\mathrm{Cu} 1$	$2.2937(13)$
$\mathrm{N} 4-\mathrm{C} 11$	$1.153(2)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.0129(12)$
$\mathrm{N} 4-\mathrm{Cu} 1$	$1.9794(14)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$2.0141(12)$
$\mathrm{C} 11-\mathrm{S} 1$	$1.6237(16)$		
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 4$	$88.74(6)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$89.39(5)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$90.41(5)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$90.07(5)$
$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{N} 1$	$164.83(6)$	$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{O} 3$	$97.81(7)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$176.11(5)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$97.34(6)$
$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{N} 2$	$90.43(6)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 3$	$93.81(5)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 12 \mathrm{~W} \cdots \mathrm{O} 2^{\text {i }}$	0.81 (3)	1.98 (3)	2.782 (3)	171 (4)
$\mathrm{O} 3-\mathrm{H} 11 \mathrm{~W} \cdots \mathrm{~S} 1^{\text {i }}$	0.77 (3)	2.72 (2)	3.436 (3)	166 (4)
$\mathrm{N} 3-\mathrm{H} 5 \cdots \mathrm{O} 2^{\text {ii }}$	0.87 (1)	1.96 (1)	2.831 (2)	176 (1)
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O}{ }^{\text {iii }}$	0.93 (1)	2.52 (1)	3.378 (1)	155 (1)

The H atoms of the dpyam ligand and coordinated water molecule were located in a difference Fourier map and refined isotropically, while the methyl H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}$ $=0.96 \AA$, and the torsion angle was refined to fit the electron density, $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000b); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge the Thailand Research Fund, Khon Kaen University, and the Higher Education Development Project: Postgraduate Education and Research Program in Chemistry, Thailand, for support.

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Bruker (2000). SMART (Version 5.6) and SAINT (Version 5.6). Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hathaway, B. J. (1987). Comprehensive Coordination Chemistry. The Synthesis, Reactions, Properties and Applications of Coordination Compounds, Vol. 5, edited by G. Wilkinson, R. D. Gillard, J. A. McCleverty, Section 53, pp. 533774. Oxford: Pergamon Press.

metal-organic papers

Sheldrick, G. M. (2000a). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2000b). SHELXTL. Version 6.12. Bruker AXS Inc.,
Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

